Comments for previous commit
This commit is contained in:
parent
33f2207881
commit
07f6ef9479
|
@ -287,7 +287,10 @@ public class OsuHitObject {
|
|||
* @return true if new combo
|
||||
*/
|
||||
public boolean isNewCombo() { return (type & TYPE_NEWCOMBO) > 0; }
|
||||
|
||||
/**
|
||||
* Returns the multiplier for coordinates
|
||||
* @return
|
||||
*/
|
||||
public static float getMultiplier() {
|
||||
return xMultiplier;
|
||||
}
|
||||
|
|
|
@ -92,71 +92,154 @@ public class Slider implements HitObject {
|
|||
private int ticksHit = 0, tickIntervals = 1;
|
||||
|
||||
private abstract class Curve{
|
||||
/**
|
||||
* Returns the point on the curve at a value t.
|
||||
* @param t the t value [0, 1]
|
||||
* @return the point [x, y]
|
||||
*/
|
||||
public abstract float[] pointAt(float t);
|
||||
|
||||
/**
|
||||
* Draws the full Bezier curve to the graphics context.
|
||||
*/
|
||||
public abstract void draw();
|
||||
|
||||
/**
|
||||
* Returns the angle of the first control point.
|
||||
*/
|
||||
public abstract float getEndAngle();
|
||||
|
||||
|
||||
/**
|
||||
* Returns the angle of the last control point.
|
||||
*/
|
||||
public abstract float getStartAngle();
|
||||
}
|
||||
|
||||
/**
|
||||
* A two dimensional vector
|
||||
*/
|
||||
private class Vec2f{
|
||||
float x, y;
|
||||
|
||||
/**
|
||||
* Constructor of the (nx, ny) Vector
|
||||
* @param nx
|
||||
* @param ny
|
||||
*/
|
||||
public Vec2f(float nx, float ny) {
|
||||
x=nx;
|
||||
y=ny;
|
||||
}
|
||||
/**
|
||||
* Constructor of the (0,0) Vector
|
||||
*/
|
||||
public Vec2f() {
|
||||
// TODO Auto-generated constructor stub
|
||||
}
|
||||
|
||||
/**
|
||||
* Finds the midpoint between this Vector and "o" Vector
|
||||
* @param o the other Vector
|
||||
* @return midpoint vector
|
||||
*/
|
||||
public Vec2f midPoint(Vec2f o){
|
||||
return new Vec2f((x+o.x)/2, (y+o.y)/2);
|
||||
}
|
||||
/**
|
||||
* Subtracts the "o" vector from this vector
|
||||
* @param o the other Vector
|
||||
* @return itself for chaining
|
||||
*/
|
||||
public Vec2f sub(Vec2f o){
|
||||
x-=o.x;
|
||||
y-=o.y;
|
||||
return this;
|
||||
}
|
||||
/**
|
||||
* Sets this Vector to the normal of this Vector
|
||||
* @return itself for chaining
|
||||
*/
|
||||
public Vec2f nor(){
|
||||
float nx = -y, ny =x;
|
||||
x=nx;
|
||||
y=ny;
|
||||
return this;
|
||||
}
|
||||
/**
|
||||
* Makes a new Vector that is a copy of this Vector
|
||||
* @return a copy of this Vector
|
||||
*/
|
||||
public Vec2f cpy(){
|
||||
return new Vec2f(x, y);
|
||||
}
|
||||
/**
|
||||
* Adds nx to the x component and ny to the y component of this Vector
|
||||
* @param nx
|
||||
* @param ny
|
||||
* @return
|
||||
*/
|
||||
public Vec2f add(float nx, float ny) {
|
||||
x+=nx;
|
||||
y+=ny;
|
||||
return this;
|
||||
}
|
||||
|
||||
/**
|
||||
* Finds the length of this Vector
|
||||
* @return the length of this Vector
|
||||
*/
|
||||
public float len() {
|
||||
return (float) Math.sqrt(x*x + y*y);
|
||||
}
|
||||
/**
|
||||
* Compares this vector to another Vector
|
||||
* @param o the Other Vector
|
||||
* @return true if the two Vector are numerically equal
|
||||
*/
|
||||
public boolean equals(Vec2f o){
|
||||
return x==o.x && y==o.y;
|
||||
}
|
||||
|
||||
}
|
||||
//finds a circle that intersects all three points
|
||||
//http://en.wikipedia.org/wiki/Circumscribed_circle
|
||||
/**
|
||||
* Representation of a curve along a Circumscribed Circle of three points.
|
||||
* http://en.wikipedia.org/wiki/Circumscribed_circle
|
||||
*/
|
||||
private class CircumscribedCircle extends Curve{
|
||||
/** The center of the Circumscribed Circle */
|
||||
Vec2f circleCenter;
|
||||
Vec2f start ,mid ,end;
|
||||
float startAng,endAng,midAng;
|
||||
float drawStartAngle,drawEndAngle;
|
||||
|
||||
/** The radius of the Circumscribed Circle */
|
||||
float radius;
|
||||
final float twopi = (float) (2*Math.PI);
|
||||
final float halfpi = (float) (Math.PI/2);
|
||||
|
||||
/** * The three points to create the Circumscribed Circle from */
|
||||
Vec2f start ,mid ,end;
|
||||
|
||||
/** The three angles relative to the circle center */
|
||||
float startAng,endAng,midAng;
|
||||
|
||||
/** The start and end angles for drawing */
|
||||
float drawStartAngle,drawEndAngle;
|
||||
|
||||
/** Two times Pi or one full circle in radians */
|
||||
final float TWO_PI = (float) (2*Math.PI);
|
||||
/** Pi divided by two or a quarter of a circle in radians */
|
||||
final float HALF_PI = (float) (Math.PI/2);
|
||||
|
||||
/** The number of steps in the curve to draw */
|
||||
private float step;
|
||||
|
||||
/**
|
||||
* Constructor
|
||||
*/
|
||||
public CircumscribedCircle(){
|
||||
this.step = hitObject.getPixelLength() / 5;
|
||||
start = new Vec2f(getX(0), getY(0));
|
||||
mid = new Vec2f(getX(1), getY(1));
|
||||
end = new Vec2f(getX(2), getY(2));
|
||||
|
||||
//construct the three points
|
||||
start = new Vec2f(getX(0), getY(0));
|
||||
mid = new Vec2f(getX(1), getY(1));
|
||||
end = new Vec2f(getX(2), getY(2));
|
||||
|
||||
//find the circle center
|
||||
Vec2f mida = start.midPoint(mid);
|
||||
Vec2f midb = end.midPoint(mid);
|
||||
Vec2f nora = mid.cpy().sub(start).nor();
|
||||
|
@ -164,7 +247,7 @@ public class Slider implements HitObject {
|
|||
|
||||
circleCenter = intersect(mida, nora, midb, norb);
|
||||
|
||||
|
||||
//find the angles relative to the circle center
|
||||
Vec2f startAngPoint = start.cpy().sub(circleCenter);
|
||||
Vec2f midAngPoint = mid.cpy().sub(circleCenter);
|
||||
Vec2f endAngPoint = end.cpy().sub(circleCenter);
|
||||
|
@ -176,42 +259,56 @@ public class Slider implements HitObject {
|
|||
|
||||
//find angles that passes thru midAng
|
||||
if(!isIn(startAng,midAng,endAng)){
|
||||
if(Math.abs(startAng+twopi-endAng)<twopi && isIn(startAng+(twopi),midAng,endAng)){
|
||||
startAng+=twopi;
|
||||
}else if(Math.abs(startAng-(endAng+twopi))<twopi && isIn(startAng,midAng,endAng+(twopi))){
|
||||
endAng+=twopi;
|
||||
}else if(Math.abs(startAng-twopi-endAng)<twopi && isIn(startAng-(twopi),midAng,endAng)){
|
||||
startAng-=twopi;
|
||||
}else if(Math.abs(startAng-(endAng-twopi))<twopi && isIn(startAng,midAng,endAng-(twopi))){
|
||||
endAng-=twopi;
|
||||
if(Math.abs(startAng+TWO_PI-endAng)<TWO_PI && isIn(startAng+(TWO_PI),midAng,endAng)){
|
||||
startAng+=TWO_PI;
|
||||
}else if(Math.abs(startAng-(endAng+TWO_PI))<TWO_PI && isIn(startAng,midAng,endAng+(TWO_PI))){
|
||||
endAng+=TWO_PI;
|
||||
}else if(Math.abs(startAng-TWO_PI-endAng)<TWO_PI && isIn(startAng-(TWO_PI),midAng,endAng)){
|
||||
startAng-=TWO_PI;
|
||||
}else if(Math.abs(startAng-(endAng-TWO_PI))<TWO_PI && isIn(startAng,midAng,endAng-(TWO_PI))){
|
||||
endAng-=TWO_PI;
|
||||
}else{
|
||||
throw new Error("Cannot find Angles between midAng "+startAng+" "+midAng+" "+endAng);
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
//Find an angle with an arc length of pixellength along this cirlce
|
||||
radius = startAngPoint.len();
|
||||
float pixelLength = hitObject.getPixelLength() * OsuHitObject.getMultiplier();
|
||||
float arcAng = pixelLength / radius; //len = theta * r / theta = len/r
|
||||
|
||||
//float orgArcLen = (startAng-endAng)*radius;
|
||||
//System.out.println("ArgLen:"+pixelLength+" "+orgArcLen);
|
||||
|
||||
//now use it for our new end angle
|
||||
if(endAng>startAng){
|
||||
endAng=startAng+arcAng;
|
||||
}else{
|
||||
endAng=startAng-arcAng;
|
||||
}
|
||||
|
||||
|
||||
drawEndAngle = (float) ((endAng+(startAng>endAng?halfpi:-halfpi)) * 180 / Math.PI);
|
||||
drawStartAngle = (float) ((startAng+(startAng>endAng?-halfpi:halfpi)) * 180 / Math.PI);
|
||||
//finds the angles to draw for repeats
|
||||
drawEndAngle = (float) ((endAng+(startAng>endAng?HALF_PI:-HALF_PI)) * 180 / Math.PI);
|
||||
drawStartAngle = (float) ((startAng+(startAng>endAng?-HALF_PI:HALF_PI)) * 180 / Math.PI);
|
||||
|
||||
}
|
||||
/**
|
||||
* Checks to see if "b" is between "a" and "c"
|
||||
* @param a
|
||||
* @param b
|
||||
* @param c
|
||||
* @return true if b is between a and c
|
||||
*/
|
||||
private boolean isIn(float a,float b,float c){
|
||||
return (b>a && b<c) || (b<a && b>c);
|
||||
}
|
||||
//http://gamedev.stackexchange.com/questions/44720/line-intersection-from-parametric-equation
|
||||
/**
|
||||
* Finds the point of intersection between two parametric lines of A = a + ta*t and B = b + tb*u
|
||||
* http://gamedev.stackexchange.com/questions/44720/line-intersection-from-parametric-equation
|
||||
* @param a the initial position of the line A
|
||||
* @param ta the direction of the line A
|
||||
* @param b the initial position of the line B
|
||||
* @param tb the direction of the line B
|
||||
* @return the point at which the two lines interssect
|
||||
*/
|
||||
private Vec2f intersect(Vec2f a, Vec2f ta, Vec2f b, Vec2f tb) {
|
||||
// xy = a + ta * t = b + tb * u
|
||||
// t =(b + tb*u -a)/ta
|
||||
|
@ -229,17 +326,16 @@ public class Slider implements HitObject {
|
|||
float u = ((b.y-a.y)*ta.x + (a.x-b.x)*ta.y) / des;
|
||||
return b.cpy().add(tb.x*u,tb.y*u);
|
||||
}
|
||||
|
||||
@Override
|
||||
public float[] pointAt(float t) {
|
||||
float ang = lerp(startAng, endAng, t);
|
||||
return new float[]{(float) (Math.cos(ang)*radius+circleCenter.x),(float) (Math.sin(ang)*radius+circleCenter.y)};
|
||||
}
|
||||
@Override
|
||||
public void draw() {
|
||||
Image hitCircle = GameImage.HITCIRCLE.getImage();
|
||||
Image hitCircleOverlay = GameImage.HITCIRCLE_OVERLAY.getImage();
|
||||
//Utils.drawCentered(hitCircleOverlay, start.x, start.y, Utils.COLOR_WHITE_FADE);
|
||||
//Utils.drawCentered(hitCircleOverlay, mid.x, mid.y, Utils.COLOR_WHITE_FADE);
|
||||
//Utils.drawCentered(hitCircleOverlay, end.x, end.y, Utils.COLOR_WHITE_FADE);
|
||||
//Utils.drawCentered(hitCircleOverlay, circleCenter.x, circleCenter.y, Utils.COLOR_WHITE_FADE);
|
||||
// draw overlay and hit circle
|
||||
for(int i=0; i<step; i++){
|
||||
float[] xy = pointAt(i/step);
|
||||
|
@ -396,19 +492,31 @@ public class Slider implements HitObject {
|
|||
}
|
||||
}
|
||||
|
||||
//Linear(ish) Bezier curve
|
||||
//http://pomax.github.io/bezierinfo/#tracing
|
||||
/**
|
||||
* Representation of a Bezier curve with equal distant points.
|
||||
* http://pomax.github.io/bezierinfo/#tracing
|
||||
*/
|
||||
private class LinearBezier extends Curve{
|
||||
/** The angles of the first and last control points. */
|
||||
/** The angles of the first and last control points for drawing. */
|
||||
private float startAngle, endAngle;
|
||||
|
||||
/** List of Bezier curves in the set of points */
|
||||
LinkedList<Bezier2> beziers = new LinkedList<Bezier2>();
|
||||
|
||||
/** Points along the curve at equal distance. */
|
||||
Vec2f[] curve;
|
||||
|
||||
/** The number of points along the curve */
|
||||
int ncurve;
|
||||
|
||||
/**
|
||||
* Constructor
|
||||
*/
|
||||
public LinearBezier(){
|
||||
//splits points into different beziers if has the same points(Red points)
|
||||
|
||||
int npoints = hitObject.getSliderX().length + 1;
|
||||
LinkedList<Vec2f> points = new LinkedList<Vec2f>();
|
||||
int npoints = hitObject.getSliderX().length + 1; //The number of control points
|
||||
LinkedList<Vec2f> points = new LinkedList<Vec2f>(); // a temporary list of points to separete different bezier curves
|
||||
Vec2f lastPoi = null;
|
||||
for(int i=0; i<npoints; i++){
|
||||
Vec2f tpoi = new Vec2f(getX(i), getY(i));
|
||||
|
@ -421,7 +529,8 @@ public class Slider implements HitObject {
|
|||
|
||||
}
|
||||
if(points.size()<2){
|
||||
throw new Error("trying to continue Beziers with less than 2 points");
|
||||
//Ending on a red point (probably) just ignore
|
||||
//throw new Error("trying to continue Beziers with less than 2 points");
|
||||
}else{
|
||||
beziers.add(new Bezier2(points.toArray(new Vec2f[0])));
|
||||
points.clear();
|
||||
|
@ -448,6 +557,8 @@ public class Slider implements HitObject {
|
|||
float lastDistanceAt = 0;
|
||||
//length of Bezier should equal pixel length (in 640x480)
|
||||
float pixelLength = hitObject.getPixelLength()*OsuHitObject.getMultiplier();
|
||||
|
||||
//For each distance, try to get in between the two points that is between it.
|
||||
for(int i=0;i<ncurve+1;i++){
|
||||
int prefDistance = (int) (i*pixelLength/ncurve);
|
||||
while(distanceAt<prefDistance){
|
||||
|
@ -520,13 +631,28 @@ public class Slider implements HitObject {
|
|||
return startAngle;
|
||||
}
|
||||
}
|
||||
/**
|
||||
* Representation of a Bezier curve with the distance between each point calculated.
|
||||
*/
|
||||
private class Bezier2{
|
||||
/** The control points of the Bezier curve */
|
||||
Vec2f[] points;
|
||||
|
||||
/** Points along the curve of the Bezier curve */
|
||||
Vec2f[] curve;
|
||||
|
||||
/** distance between this point of the curve and the last point */
|
||||
float[] curveDis;
|
||||
|
||||
/** The number of points along the curve */
|
||||
int ncurve;
|
||||
|
||||
/** The total distances of this Bezier */
|
||||
float totalDistance;
|
||||
|
||||
/*
|
||||
* Constructor
|
||||
*/
|
||||
public Bezier2(Vec2f[] points) {
|
||||
|
||||
this.points = points;
|
||||
|
@ -543,7 +669,7 @@ public class Slider implements HitObject {
|
|||
curve[i] = pointAt(i/(float)ncurve);
|
||||
}
|
||||
|
||||
//find the distance of each subdivision
|
||||
//find the distance of each point from the previous point
|
||||
curveDis= new float[ncurve];
|
||||
for(int i=0; i<ncurve; i++){
|
||||
if(i==0)
|
||||
|
@ -556,9 +682,19 @@ public class Slider implements HitObject {
|
|||
//System.out.println("New Bezier2 "+points.length+" "+approxlength+" "+totalDistance());
|
||||
|
||||
}
|
||||
/**
|
||||
* Returns the total Distances of this Bezier Curve
|
||||
*/
|
||||
public float totalDistance(){
|
||||
return totalDistance;
|
||||
}
|
||||
|
||||
|
||||
/**
|
||||
* Returns the point on the Bezier curve at a value t.
|
||||
* @param t the t value [0, 1]
|
||||
* @return the point [x, y]
|
||||
*/
|
||||
public Vec2f pointAt(float t) {
|
||||
Vec2f c = new Vec2f();
|
||||
int n = points.length-1;
|
||||
|
@ -586,10 +722,20 @@ public class Slider implements HitObject {
|
|||
Math.pow(t, i) * Math.pow(1-t, n-i);
|
||||
}
|
||||
}
|
||||
/**
|
||||
* Linear interpolation of a and b at t
|
||||
* @param a
|
||||
* @param b
|
||||
* @param t
|
||||
* @return
|
||||
*/
|
||||
private float lerp(float a, float b, float t){
|
||||
return a*(1-t) + b*t;
|
||||
}
|
||||
//http://en.wikipedia.org/wiki/De_Casteljau%27s_algorithm
|
||||
/**
|
||||
* "a recursive method to evaluate polynomials in Bernstein form or Bezier curves"
|
||||
* http://en.wikipedia.org/wiki/De_Casteljau%27s_algorithm
|
||||
*/
|
||||
private float deCasteljau (float[] a, int i, int order, float t){
|
||||
if(order==0)
|
||||
return a[i];
|
||||
|
|
Loading…
Reference in New Issue
Block a user