/* * opsu! - an open-source osu! client * Copyright (C) 2014, 2015 Jeffrey Han * * opsu! is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * opsu! is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with opsu!. If not, see . */ package itdelatrisu.opsu.objects.curves; /** * Representation of a Bezier curve with the distance between each point calculated. * * @author fluddokt (https://github.com/fluddokt) */ public class Bezier2 { /** The control points of the Bezier curve. */ private Vec2f[] points; /** Points along the curve of the Bezier curve. */ private Vec2f[] curve; /** Distances between a point of the curve and the last point. */ private float[] curveDis; /** The number of points along the curve. */ private int ncurve; /** The total distances of this Bezier. */ private float totalDistance; /** * Constructor. * @param points the control points */ public Bezier2(Vec2f[] points) { this.points = points; // approximate by finding the length of all points // (which should be the max possible length of the curve) float approxlength = 0; for (int i = 0; i < points.length - 1; i++) approxlength += points[i].cpy().sub(points[i + 1]).len(); // subdivide the curve this.ncurve = (int) (approxlength / 4); this.curve = new Vec2f[ncurve]; for (int i = 0; i < ncurve; i++) curve[i] = pointAt(i / (float) ncurve); // find the distance of each point from the previous point this.curveDis = new float[ncurve]; this.totalDistance = 0; for (int i = 0; i < ncurve; i++) { curveDis[i] = (i == 0) ? 0 : curve[i].cpy().sub(curve[i - 1]).len(); totalDistance += curveDis[i]; } // System.out.println("New Bezier2 "+points.length+" "+approxlength+" "+totalDistance()); } /** * Returns the point on the Bezier curve at a value t. * @param t the t value [0, 1] * @return the point [x, y] */ public Vec2f pointAt(float t) { Vec2f c = new Vec2f(); int n = points.length - 1; for (int i = 0; i <= n; i++) { double b = bernstein(i, n, t); c.x += points[i].x * b; c.y += points[i].y * b; } return c; } /** * Returns the points along the curve of the Bezier curve. */ public Vec2f[] getCurve() { return curve; } /** * Returns the distances between a point of the curve and the last point. */ public float[] getCurveDistances() { return curveDis; } /** * Returns the number of points along the curve. */ public int points() { return ncurve; } /** * Returns the total distances of this Bezier curve. */ public float totalDistance() { return totalDistance; } /** * http://en.wikipedia.org/wiki/Binomial_coefficient#Binomial_coefficient_in_programming_languages * */ public static long binomialCoefficient(int n, int k) { if (k < 0 || k > n) return 0; if (k == 0 || k == n) return 1; k = Math.min(k, n - k); // # take advantage of symmetry long c = 1; for (int i = 0; i < k; i++) { c = c * (n - i) / (i + 1); } return c; } /** * Calculates the Bernstein polynomial. * @param i the index * @param n the degree of the polynomial (i.e. number of points) * @param t the t value [0, 1] */ private static double bernstein(int i, int n, float t) { return binomialCoefficient(n, i) * Math.pow(t, i) * Math.pow(1 - t, n - i); } }