opsu-dance/src/itdelatrisu/opsu/objects/curves/Bezier2.java

135 lines
3.7 KiB
Java
Raw Normal View History

/*
* opsu! - an open-source osu! client
* Copyright (C) 2014, 2015 Jeffrey Han
*
* opsu! is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* opsu! is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with opsu!. If not, see <http://www.gnu.org/licenses/>.
*/
package itdelatrisu.opsu.objects.curves;
/**
* Representation of a Bezier curve with the distance between each point calculated.
*
* @author fluddokt (https://github.com/fluddokt)
*/
public class Bezier2 {
/** The control points of the Bezier curve. */
private Vec2f[] points;
/** Points along the curve of the Bezier curve. */
private Vec2f[] curve;
/** Distances between a point of the curve and the last point. */
private float[] curveDis;
/** The number of points along the curve. */
private int ncurve;
/** The total distances of this Bezier. */
private float totalDistance;
/**
* Constructor.
* @param points the control points
*/
public Bezier2(Vec2f[] points) {
this.points = points;
// approximate by finding the length of all points
// (which should be the max possible length of the curve)
float approxlength = 0;
for (int i = 0; i < points.length - 1; i++)
approxlength += points[i].cpy().sub(points[i + 1]).len();
// subdivide the curve
this.ncurve = (int) (approxlength / 4);
this.curve = new Vec2f[ncurve];
for (int i = 0; i < ncurve; i++)
curve[i] = pointAt(i / (float) ncurve);
// find the distance of each point from the previous point
this.curveDis = new float[ncurve];
this.totalDistance = 0;
for (int i = 0; i < ncurve; i++) {
curveDis[i] = (i == 0) ? 0 : curve[i].cpy().sub(curve[i - 1]).len();
totalDistance += curveDis[i];
}
// System.out.println("New Bezier2 "+points.length+" "+approxlength+" "+totalDistance());
}
/**
* Returns the point on the Bezier curve at a value t.
* @param t the t value [0, 1]
* @return the point [x, y]
*/
public Vec2f pointAt(float t) {
Vec2f c = new Vec2f();
int n = points.length - 1;
for (int i = 0; i <= n; i++) {
double b = bernstein(i, n, t);
c.x += points[i].x * b;
c.y += points[i].y * b;
}
return c;
}
/**
* Returns the points along the curve of the Bezier curve.
*/
public Vec2f[] getCurve() { return curve; }
/**
* Returns the distances between a point of the curve and the last point.
*/
public float[] getCurveDistances() { return curveDis; }
/**
* Returns the number of points along the curve.
*/
public int points() { return ncurve; }
/**
* Returns the total distances of this Bezier curve.
*/
public float totalDistance() { return totalDistance; }
/**
* http://en.wikipedia.org/wiki/Binomial_coefficient#Binomial_coefficient_in_programming_languages
*
*/
public static long binomialCoefficient(int n, int k) {
if (k < 0 || k > n)
return 0;
if (k == 0 || k == n)
return 1;
k = Math.min(k, n - k); // # take advantage of symmetry
long c = 1;
for (int i = 0; i < k; i++) {
c = c * (n - i) / (i + 1);
}
return c;
}
/**
* Calculates the Bernstein polynomial.
* @param i the index
* @param n the degree of the polynomial (i.e. number of points)
* @param t the t value [0, 1]
*/
private static double bernstein(int i, int n, float t) {
return binomialCoefficient(n, i) * Math.pow(t, i) * Math.pow(1 - t, n - i);
}
}